
N89-16328

A Software Development Environment
Utilizing PAMELA

Prepared by:

R. L. Flick
&

R. W. Connelly

Westinghouse Defense & Electronics Center
P.O. Box 746

Baltimore, Maryland 21203

May 12. 1986

D . 4 . 3 . 1

A Software Development Environment
U t i l i n g PAMELA1

A b6 tract

Hardware capability and efficiency has increased dramatically since
the invention of the computer. while software programmer productivity
apd efficiency has remained at a relatively low level. A user-friendly,
adaptable, . integrated software development environment is needed to
alleviate this problem. The environment should be designed around the
Ada2 language and a design methodology which takes advantage of the
features of the Ada language such as the Process Abstraction Method
for Embedded Large Applications (PAMELA).

Introduction

Since the invention of the computer, advances in software
development productivity have not kept pace with hardware productivity.
Although the throughput of modern computers has made a 1,000.000-fold
increase over the last thirty years. software productivity has increased
only slightly. During the same period, hardware costs have decreased
dramatically and software costs have skyrocketed. Moreover, the
complexity of embedded systems is growing exponentially, putting an
ever increasing demand on software production.

Many studies have shown that the major costs in the software
development life cycle occur after system delivery. Approximately 70%
of these costs are incurred during the maintenance phase. There are
several reasons for this:

1. Personnel costs for software professionals have risen steadily
over the years. Consequently, for large systems designed to
last many years, the cost of people becomes a major concern.

2. Inadequacy of documentation either internal or external to the
code is a continual source of increased costs. Frequently on
large systems. a modification in one routine will affect many
other routines in unexpected ways. It is not uncommon that a

1.
2. Ada is a registered trademark of the United States Department of Defense,

PAMELA is a trademark of Dr. George Cherry,

Ada Joint Program Office.

Reston, Virginia

D . 4 . 3 . 2

change to correct one error will lead to numerous other errors.
This is partially because large programs are intrinsically hard to
understand, but also because inadequate documentation
hampers understanding. Furthermore. most programming
languages do not promote greater understanding since they do
not always enforce good software engineering practices.

3. Yet another factor is an inadequate design process. Frequently,
paper designs are created by systems engineers and then handed
to programmers for implementation. The programmer often will
tend to stray from the paper design in order to increase
efficiency or make changes that are required by the constraints
of the language employed.

The real cost of software therefore is in the maintenance of
programs - but it originates in the methods and languages used to
create these programs.

Current projections show that the cost of developing software is
likely to continue to increase unless new. more efficient methods are
employed. If current trends continue there will be a short fal l of
programmers by 1990 which may exceed 800,000.3 Such a devastating
short fall will slow software development to a crawl for many major
government programs.

Current trends can be reversed by developing and utilizing standard
software engineering practices throughout the software industry. These
practices can be implemented in an expert system that is designed to
specifically support one design methodology. In addition the methodology
used must be specific to the language that is supported. The preferred
language to be used is Ada, and one methodology that is specifically
designed for the Ada language is PAMELA.

The Ada Language

Since the software development environment supports development of
large embedded applications for the Department Of Defense (DOD)
applications. and incorporate state-of-the-art tools. the language of choice
is Ada. Ada is a fairly new language developed by the DOD specifically
for embedded applications. Although Ada is new. the DOD has set a
requirement that all new software written for the DOD will be done in
Ada. As the advantages of using Ada as a general purpose programming

S. Mr. Edward Berard, EVB Systems, ACM SIGAda meeting, Los Angeles,
California, February, 1986.

D . 4 . 3 . 3

language become more fully developed. commercial firms will also
choose Ada for there software needs. Some of the important features
brought to software engineering are :

Code Reusability:

Ada supports code reusability in the form of generic packages, a
common library of compiled units. and modular coding techniques. With
these facilities Westinghouse has established a common database of
program modules a t the company level. By establishing and using this
database of reusable software modules. generating software for
embedded applications has become cheaper and faster.

Tab king:

Something new that is supported by Ada and virtually no other
language, i s the task unit. This unit is on the same level as a function
or subprogram with one important difference: a task unit can be declared
as a type. Because of tasking, generating embedded systems that
require some form of parallel processing is easier.

Parallel Development:

An important feature of Ada, is the ability to do parallel
development. Ada offers this facility in the form of separate compilation
units. Westinghouse has found that several individuals can work on
different sections of the code and not interfere with each other, and that
code development is not dependant on any special order of
accomplishment (other than Ada's dependency rules of course).
Westinghouse has been able to increase software engineering productivity
by reducing the scope of dependencies within the software application.

Information Hiding:

Ada provides the facility to hide the underlying machine dependent
representation of data items. This discourages the software engineer
from depending on a machine specific characteristic when implementing a
section of the software system. It also means that the code generated
should be transportable to any other machine that supports a validated
Ada compiler.

Strong Type Checking Across Separate Compilation Units:

Ada is a strongly typed language that will not allow nonconformant
data types to be passed between program units. The purpose of Ada's
strong type checking is to prevent common errors from occurring when
calling another software engineer's code.

D . 4 . 3 . 4

Ada's Place In The Design Of A Software System:

To be able to take advantage of the state-of-the-art facilities that
Ada offers, the perception of when the capabilities of the programming
language that is used is to be considered must be changed. In addition
a design methodology that implements design concepts specified in MIL-
STD 2167 and takes into account the improved facilities of Ada must be
u,tilized.

Up until now the typical method for designing a software system
involved specifying requirements. doing a preliminary design. doing a
detailed design using a PDL and finally selecting a language and
implementing the design. The primary methodology used when designing
the system was typically a derivative of Data Flow Diagrams. (see Fig.
1) This approach has worked with other languages (before Ada)
because they did not provide sophisticated facilities for embedded
environments such as tasking. Languages therefore, had l i t t le impact on
the design of the system itself. aside from Ada,
are sequential in nature. The design methodology used to express a
system under development in this language is compatible with the
capabilities of the language used and is sequential in nature.

All popular languages,

if Ada is to become an effective alternative. several common
practices and assumptions used in designing an embedded system must
change, and a design methodology that is designed to accommodate a
specific language must be used. To be able to take advantage of the
advanced features that Ada offers, the methodology must take the
language features into consideration in the preliminary design phase of a
software system (see Fig. # 2). This means that consideration of
language facilities should be an integral part of the preliminary and
detailed design of the system. If the language considerations are made
early in the development of the preliminary design. the overall impact
will be in the areas of coding and integration time. These two areas
comprise most of a software systems development cost. If however,
Ada's facilities are not considered early in the preliminary development,
Ada will offer almost no advantage over any other language.

The method of considering Ada's facilities in the preliminary and
detailed design phase is dependent on the methodology used to express
these designs. The popular methodologies of flow chart's, data flow
diagrams, etc. will be of l i tt le advantage in the preliminary design phase
when using Ada. The inability of these methodologies to express the
unique facilities of tasking. code reusability, modular design, and parallel
development diminish their usefulness for creating a design based on

D . 4 . 3 . 5

w

m

U

0.4.3.6

P

D.4 .3 .7

Ada. It i s therefore necessary that a design methodology that can
express parallelism. code reusability. modular design, and parallel
development be used. It is also necessary that the methodology used in
the preliminary and detailed design be a direct expression of the Ada
language. We have found that PAMELA f i ts this description.

Description of PAMELA

PAMELA is a methodology for producing real-time Ada programs
which utilize Ada tasking. It was designed by Dr. George Cherry
(Reston. Virginia) to address the needs of Ada users in developing real-
time programs using Ada's rich variety of language features.

PAMELA is a structured methodology that encourages a top-down
approach, with each step in the method revealing more details than the
previous step. (see Fig. # 3) It i s also a graphical methodology which
produces pictographs of the underlying Ada code. In fact, Ada package
and task specifications. as well as skeletal package and task bodies,
can be produced directly from PAMELA graphs.

PAMELA combines aspects the two most prominent program
representation methodologies of the past two decades, data flow
diagrams and control flow diagrams (flow charts). I t 's pictographs are
very similar to those produced by structured analysis and structured
design techniques (data flow diagrams), but it also embodies a certain
amount of control flow information - primarily because of the well
defined Ada tasking mechanism.

PAMELA guides the program designer in the selection of multiple,
concurrent threads of execution (called processes in PAMELA
nomenclature). By analyzing the requirements of the problem, and by
following the process idioms outlined in the method. (see Fig. # 4) the
program designer identifies which elements of the program should become
processes. He then determines what kind of data or control signals
must be passed between processes. Next. he determines which process
i s the producer of the flow and which is the consumer. (see Fig. # 5)
Finally, he determines which of the processes should be single-thread (a
typical C. PASCAL, or FORTRAN - style program) and which should be
multi-thread (more than one Ada task). Once the graph has been
annotated with this information. Ada code can automatically be
generated (in skeletal form) which implements the design.

D . 4 . 3 . 8

0: c
P
cp
b

v)
Q)
v1

0
0
8

&
E
b

0
c c,
0 a I
9

8
I i

U
Q)

m
=%

w
d
3 x a n L;

c
Q)

c c, - E
i:
0

L

f w
6)

E"
4
0
0

0
3
0 a

D . 4 . 3 . 9

E
0
0
C
3

*.
C

r v) cn
W E aa Q,

U
L

0 L
Q,
P
Q)
0
t e o

t m
0

E Y
rd
0
m

I I n
~a
0

' L

Q)

B L
rp c

*- E
e- b o a

P
v) c1

0
C

*m
e, z

0
I F
f -

c'
C aa
0
E aa
I
Q,
0

Y *--
tu L n

r b c

t m E
>
0 fu

*-
c,

-0 E
>
0 m
- c C

I Q)

0

I L

e-

L *-
3
U
Q)
L

I Y

9 c
0 *- b

c,
Q)

LL
W

a?

!
'0
tu
L

c,
0 m *- E

2
> *-
Y

e o

e,
>

e o n
$ 3 L

0

E P
0 0
0 0
kc3 0 . LL .. g
E
L
Q, c

i

From the PAMELA graphs. single-thread processes become Ada
tasks. while multi-thread processes become packages. The package
body of a multi-thread process contains task and package specifications
for the lower level single- and multi-thread processes respectively.

The Problem To Be Solved

The problem of increasingly large and complex software systems, in
cQncert with a massive projected shortfall of software engineers in the
next decade, fueled by spiraling software costs, must be abated. It is
foolhardy to think that software systems will decrease in complexity: al l
current trends support the notion that future software systems will be
very much more complex than those of today. The number of software
engineers may increase by the next decade, but probably not fast
enough to meet the challenges of these more complex systems. If
software engineers continue to be in high demand, there i s l i t t le hope
of abating spiraling software costs.

The key to the solution of the problem is to substantially increase
the productivity of software professionals. The primary tool to
accomplish this goal is a high performance Software Development
Environment (SDE). The SDE must be designed and built around a
single specific language and design methodology. Since the DOD has
mandated that al l new software written for the DOD will be in Ada.
Ada is the natural language of choice for the SDE. There are several
new Ada based design methodologies such as Object Oriented Design
(OOD). PAMELA (Process Abstraction Methodology for Embedded Large
Applications), and Ada Partition Programming Language (APPL). Of
al l the new design methodologies we are considering PAMELA, as an
example, around which to design the SDE.

The Software Development Environment

A software development environment (SDE) is being created a t
Westinghouse which supports al l activities associated with the
development of embedded software systems, as well as software
management and post deployment support. By integrating al l of the
activities involved in software development under the control of one
expandable, adaptable environment, software development and support
can be made easier, more cost effective. and more reliable (see Fig. #
6).

D. 4.3.12

D.4.3.13

Important elements of the environment are:

R elis bili ty:

The reliability of programs created under the SDE must be
significantly greater than that of programs generated without such an
environment. Reliability metrics. when applied to programs created
under the SDE. should show a measurable and statistically significant
increase in reliability. This in t u r n will require that the SDE itself be
iqn exceptionally reliable program. We have seen that by using
PAMELA, it is relatively straightforward t o create reliable designs in a
timely manner. Since the underlying Ada code maps directly to
PAMELA pictographs, it is only necessary to correctly identify control
and data flows a t a high (pictograph) level to insure the reliability of
the underlying code. Application of expert system techniques will also
enhance the reliability of the environment.

Ease of Use:

The SDE will encompass a common, multi-level. user friendly
interface. In particular, the interface will be a s easy to use for the
novice a s for the expert. This will probably be accomplished with a
multi-window, menu-driven interface which will provide full prompting
for the novice. a series of function keys and/or control
keys can be defined (by the environment and/or by the user) to enable
rapid execution of frequently used command sequences. For others, on-
line help and an English-like command interface will be provided. Every
user will be able to select the interface he/she prefers and will also be
allowed to jump to any particular interface level a t will.

For the expert.

PAMELA will support the ease of use concept since it is graphical,
and is supported by an interactive, full screen tool which can
automatically generate executable code.

Cost Effectiveness:

The environment should be networked so that individual
workstations can be utilized by development and management personnel.
This means tha t each individual or team will be able to achieve
maximum utilization of the facilities available while avoiding the typical
slow down experienced with multi-user super-mini implementations.
Because of advances in micro-processors, a single user workstation can
provide an engineer with a more responsive machine than can normally
be attained with a time-shared super-mini. The resultant increase in
throughput. can increase productivity substantially. As a side benefit,
costs incurred due to main CPU down-time can be minimized by
allowing the workstations to operate independent from the host.

D.4.3.14

The use of PAMELA should also prove cost effective in that it
allows for rapid prototyping of the software system within the SDE.
This allows the program implementors (and designers) to identify and
correct potential or unexpected problem areas before they actually become
problem areas.

Adaptability:

, The environment will support various tools that will measure
productivity. quality, maintainability and overall cost. This means that
management will have the ability to measure all aspects of the evolving
system in terms of quality. It will also allow
the measurement of team performance compared to calibration data
contained in the database. Such measurements can be used to
recalibrate the system to more accurately reflect real world situations.

maintainability and cost.

PAMELA has proven itself to be quite adaptable. In one particular
a 7000 line program was re-designed and re-implemented from instance.

scratch in just three days.

Design Continuity:

The environment is an expert system which provides tools that
enhance al l phases of the software life cycle. Program requirements are
entered into a relational data base under the control of the expert
system. Once a requirement has been entered, a basis is established
for al l later phases of the software life cycle. In particular. design.
coding, and test specifications are derived from the requirements and
related back to them by the expert system. This provides traceability
from requirements to code, but also allows the environment to provide
an impact analysis report for each requirement.

Software designs (specifically PAMELA designs) are accepted by the
expert system. Once a design has been entered. it can be verified for
compliance to the requirements by the environment.

Tools such as language sensitive editors, compilers. and debuggers
which facilitate the coding and unit testing process can also be directed
by the environment. For example, a compiler which produces diagnostic
information could relate the number and kinds of programmer errors to
the environment. The expert system could in turn relate this
information back to a language sensitive editor to help correct
programmer mistakes as they happen.

Since al l requirements and design information are entered into the
expert environment, test scenarios and/or test cases can be
automatically generated to verify the design.

Program Visibility

The SDE supports al l levels of management visibility into the
current status, and projected results of the project. This means that
the management functions of progress tracking, scheduling. and cost
information gathering will be provided by the expert system. This
includes but is not limited to. the automatic generation documentation
a,nd management reports with l i t t l e or no human intervention. In
addition there i s some capability of the software factory concept in that
generic, reusable software could be placed in the design by the expert
system itself. This will alleviate the problem of the software engineer
overlooking a reusable package that is in the database of reusable
program modules.

Projected Environment Layout:

The environment will be as flexible as possible and support all types
and sizes of software development. The system will incorporate artificial
intelligence. networking, database management and some form of
electronic mail. The hardware of such a system is projected to be
composed of the following components:

1. A VAX minicomputer as the central database machine.

2. Several VAXSTATION 11's as individual workstations.

3. Several micro computers such as IBM PC/AT's for manager
workstations.

4. Some type of clustering system.

5. Some type of LAN (Local Area Network) system for node
communications.

6. Hardware simulators and development stations for hardware
specific support.

(see Fig. # 7)

Potential Problem Arenas

As is the case with all things, PAMELA is not perfect. There are
two potential problem arenas associated with PAMELA which affect the
performance of the SDE. For one thing, PAMELA designs typically

D.4.3.16

H
J

ORIGINAL PAGE IS
OF POOR QUALITY

I

v)

w
tu
\ u
Q

t m

I

U

D.4.3.17

f
8
f
4
d
6

L, P U

create too many tasks. This i s not a fault with the methodology per
se. but reflects the fact that there are precious few machines out there
that are made to run Ada. The methodology has been altered
somewhat to account for this fact. but in so doing. it has lost some
of i t s "virtual machine" flavor.

Another potential problem arena is that of testing. The current
suggestion is to test each single-thread process using current structured
techniques. As each is tested, it i s integrated with the others and an
integration test is performed. Eventually a multi-thread process will be
declared valid and it then can be integrated with other processes.
There is no method however for verifying that al l the task rendezvous
and other task interactions are correct. This is st i l l a matter of art as
much as it is of science but may be alleviated somewhat by the use of
heuristic approaches common in expert systems. It is not clear however,
whether this will be harmful for large embedded systems. If the paper
design is solid, the implementation should be as well: but there is
unfortunately no method for verifying paper designs either.

Potential Solutions

' The horizon should not be clouded by the concerns raised above.
Each problem poses new and exciting possibilities for new technologies
and new ideas to solve those problems. Each new challenge brings us
closer yet to another breakthrough.

The problems posed in the development of a state-of-the-art
software development environment can be solved by hard work and
dedication. They should not be attacked alone. but in concert with
concerned organizations willing to lead us into the next century.

Conclusions

In conclusion. the need for a comprehensive, integrated software
development environment has been demonstrated by the severe lack of
productivity in developing software as compared to computer hardware.
The need to automate documentation so that it provides a better picture
of the program is essential to decreasing the maintenance costs of large
software systems. An automated, integrated environment supporting a
single specific language such as Ada and designed around a specific
methodology such as PAMELA will reduce time and errors in the design
and testing phases. Since the environment will ensure adequate tracking
of requirements, design, implementation and testing. the cohesion is

/

D. 4.3.18

provided to aid management tracking of progress during the software life
cycle. A common. multi-level, user friendly interface i s absolutely
required to insure maximum effectiveness for al l users of various levels of
experience and expertise. Finally. PAMELA is an ideal design
methodology for such an environment. since it is Ada-based. and
naturally addresses multiple concurrent tasks. PAMELA has been used
on projects at Westinghouse and has proven i ts effectiveness for rapid
prototyping. ease of design, maintainability and adaptability.'

4. Some material contained in this document was presented by Rich Connelly and
Barbara Sullivan at the SigAda conference held in Boston Ma. in Nov. 1985

